
Maskin Meets Abreu and Matsushima:

Rationalizable Implementation∗

Yi-Chun Chen† Takashi Kunimoto‡ Yifei Sun§ Siyang Xiong¶

May 19, 2019

Abstract

We prove that the Maskin monotonicity∗ condition proposed by Bergemann et al.

(2011) fully characterizes rationalizable implementation. Different from previous pa-

pers, our approach possesses many appealing features simultaneously, e.g., finite mech-

anisms (with no integer or modulo game) are used; no lottery or transfer used on the

equilibrium path; the message space is smal; the implementation is robust to informa-

tion perturbations and continuous in the sense of Oury and Tercieux (2012).

JEL Classification: C72, D78, D82.

Keywords: Complete information, continuous implementation, implementation, infor-

mation perturbations, Maskin monotonicity*, rationalizability, social choice function.

1 Introduction

The design of institution to be interacted among strategic agents has been an important

research agenda in economic theory. Suppose a society has decided on social choice rule – a

recipe for choosing the socially optimal alternatives on the basis of individuals’ preferences

∗Acknowledgements to be added.
†Department of Economics, National University of Singapore. Email: ecsycc@nus.edu.sg
‡School of Economics, Singapore Management University. Email: tkunimoto@smu.edu.sg
§School of International Trade and Economics, University of International Business and Economics.

Email: sunyifei@uibe.edu.cn
¶Department of Economics, University of Bristol. Email: siyang.xiong@bristol.ac.uk

1



over alternatives. To tackle the problem of how to implement the rule, Maskin (1999), in his

classic paper, (i) describes a decentralized decision making process as a mechanism, which

specifies the possible actions available to members of a society, as well as the outcomes of

these actions; and (ii) asks to what extent one can design a mechanism which makes its “all”

Nash equilibrium outcomes socially desirable.1 This is called Nash implementation. Maskin

proposes a well-known monotonicity condition, which we refer to as Maskin monotonicity,

and shows necessary and almost sufficient for Nash implementation.

The main purpose of our paper is to characterize the class of social choice functions

(henceforth, SCFs) that are exactly implementable in rationalizable strategies by a finite

mechanism. Rationalizable strategies are defined as the set of strategies that survive the

iterated elimination of never best responses. In finite mechanisms, as in this paper, ratio-

nalizable strategies are equivalent to the strategies that survive the iterated elimination of

strictly dominated strategies. Our mechanism excludes the integer game or modulo game

constructions which are prevalent in the literature yet possess problematic feature.

We extend Nash implementation result to implementation in rationalizable strategies.

In the same environments with lottery and monetary transfer, our Theorem 1 shows that

an SCF is implementable in rationalizable strategies by a finite mechanism if and only if it

satisfies Maskin monotonicity∗, which is proposed by Bergemann et al. (2011) (henceforth,

BMT) and stronger than Maskin monotonicity.2 Theorem 1 handles the case of two agents

as well as more than two agents and the mechanism constructed for Theorem 1 is simple.

The sufficiency result of Bergemann et al. (2011), on the other hand, needs at least three

agents and uses an infinite mechanism.

We now highlight how our results provide new insights on many classical as well as

recent results in the literature. First, Oury and Tercieux (2012) advocate for rationalizable

implementation by finite mechanisms. They consider the following situation: the planner

wants not only that there is an equilibrium that implements the SCF but also that the same

equilibrium continues to implement the SCF in all the models close to her initial model.

Hence, the SCF is continuously implementable. Theorem 4 of Oury and Tercieux (2012)

shows that an SCF is continuously implementable by a finite mechanism if it is exactly

1The original version of Maskin’s paper has been circulated since 1977.
2BMT show that Maskin monotonicity∗ is a necessary rationalizable implementation using mechanisms

satisfying what they called the best-response property (e.g., finite mechanisms).

2



implementable in rationalizable strategies by a finite mechanism.3 What has been unknown

are the conditions for exact implementation in rationalizable strategies by a finite mechanism.

Our Theorem 1 fills this important gap.4 In addition, Jain (2017) provides an example in

which Maskin monotonicity∗ is strictly stronger than Maskin monotonicity.

We also discuss rationalizable implementation when the SCF is responsive, which says

that any two distinct states lead to distinct outcomes. Bergemann et al. (2011) observe that

when the SCF is responsive, Maskin monotonicity∗ reduces to Maskin monotonicity. We

show that, for any SCF f , we can construct an SCF f ε that is ε-close to f such that f ε is

responsive and satisfies Maskin monotonicity. This is summarized as our Corollary 3: “any”

SCF is virtually implementable in rationalizable strategies by a finite mechanism.

The rest of the paper is organized as follows. In Section 2, we provide the basic def-

inition and notation for this paper’s setup. In Section 3, we adopt rationalizability and

identify Maskin monotonicity∗ as a necessary and sufficient condition for rationalizable im-

plementation by a finite mechanism. As concluding remarks, Section 4 discusses a number

of extensions of our main result.

2 Preliminaries

2.1 Environment

Consider a finite set of agents I = {1, 2, ..., I} with I ≥ 2; a finite set of possible states Θ;

and a set of pure alternatives A. We consider an environment with lotteries and transfers.

Specifically, we work with the space of allocations/outcomes X ≡ ∆ (A) × RI where ∆(A)

denotes the set of lotteries on A that have a countable support, and RI denotes the set of

transfers to the agents.

Each state θ ∈ Θ induces a type θi ∈ Θi for each agent i ∈ I. Assume that Θ has

no redundancy, i.e., whenever θ 6= θ′, we must have θi 6= θ′i for some agent i. Hence, we

3Oury and Tercieux (2012) also prove the “only if” part of the result under a further assumption that

sending messages is slightly costly.
4However, our Theorem 1 has two caveats in relation to Theorem 4 of Oury and Tercieux (2012): First,

we focus on complete information environments, whereas Oury and Tercieux (2012) deal with general incom-

plete information environments. Second, we specialize in environments with lottery and monetary transfer,

whereas Oury and Tercieux (2012) impose no conditions on the environments.

3



can identify a state θ with its induced type profile (θi)i∈I and Θ with a subset of ×Ii=1Θi.

Moreover, we say that a type profile (θi)i∈I identifies a state θ′ if θi = θ′i for every i ∈ I.

Each type θi ∈ Θi induces a utility function ui (·, θi) : X → R which is quasilinear in

transfers and has a bounded expected utility representation on ∆ (A). That is, for each

x =
(
l, (ti)i∈I

)
∈ X, we have ui (x, θi) = vi(l, θi) + ti for some bounded expected utility

function vi(l, θi) over ∆ (A).

We focus on a complete information environment in which the state θ is common

knowledge among the agents but unknown to a mechanism designer. Thanks to the complete-

information assumption, it is indeed without loss of generality to assume that agents’ values

are private. The designer’s objective is specified by a social choice function f : Θ → X,

namely, if the state is θ, the designer would like to achieve the social outcome f (θ).

2.2 Mechanism and Solution

A mechanism M is a triplet ((Mi), g, (τi))i∈I where Mi is the nonempty set of messages

available to agent i; g : M → X (M ≡ ×Ii=1Mi) is the outcome function; and τi : M → R

is the transfer rule which specifies the payment or subsidy to agent i. The environment and

the mechanism together constitute a game with complete information at each state θ ∈ Θ

which we denote by Γ(M, θ).

We adopt correlated rationalizability of Brandenburger and Dekel (1987), allowing the

agents’ beliefs to be correlated, as a solution concept and investigate the implications of

implementation in rationalizable strategies. We define rationalizability for the finite game

Γ (M, θ) as follows. Let S0
i (M, θ) = Mi, and we define Ski (M, θ) inductively: for any k > 0,

we set

Ski (M, θ) =

mi ∈Mi

∣∣∣∣∣∣∣∣
there exists λi ∈ ∆ (M−i) such that

(1) λi (m−i) > 0⇒ mj ∈ Sk−1
j (M, θ) for each j 6= i,

(2) mi ∈ arg maxmi
λi (m−i)ui (g (mi,m−i) , θi) .

 .

Then, S∞i (M, θ) =
⋂∞
k=0 S

k
i (M, θ) is the set of rationalizable messages of agent i and

S∞ (M, θ) =
∏

i∈I S
∞
i (M, θ) is the set of rationalizable message profiles in Γ (M, θ).

Definition 1 An SCF f is implementable in rationalizable strategies if there exists

a mechanism M = ((Mi), g, (τi))i∈I such that for any θ ∈ Θ, (i) S∞(M, θ) 6= ∅; and (ii)

4



for any m ∈ S∞(M, θ), we have g (m) = f (θ) and τi (m) = 0.

Remark: Since we propose a finite implementing mechanism below, S∞ (M, θ) is always

nonempty, namely, requirement (i) of rationalizable implementation is automatically satis-

fied.

2.3 Dictator Lottery

First, we state an assumption which we impose by following Abreu and Matsushima (1992,

1994). Recall that vi (·, θi) denotes the bounded expected utility function of agent i of type

θi.

Assumption 1 For each agent i, we assume (i) for any type θi, there are alternatives a and

a′ in A such that vi (a, θi) 6= vi (a, θi); (ii) θi 6= θ
′
i implies that vi (·, θi) and vi (·, θ′i) induce

different preference orders on ∆ (A).

Let Ã ≡ A ∪ f (Θ) ∪ ∪i∈I,θi∈Θi,θ̃∈ΘBθi(θ̃). Since vi(·, θi) is bounded and Θ is finite, we

choose η′ > 0 as an upper bound on the monetary value of a change in the selection of an

alternative in Ã, that is,

η′ > sup
i∈I,θi∈Θi,x,x′∈Ã

ui(x, θi)− ui(x′, θi), (1)

where we abuse notation to identify A with a subset of X, i.e., each a ∈ A is identified with

xa = (a, 0, ..., 0) ∈ X.

Given this assumption, we have the following lemma.

Lemma 1 Suppose that Assumption 1 holds. Then, for each agent i ∈ I, there exists a

function yi : Θi → X such that for any types θi and θ′i of agent i with θi 6= θ′i, we have

ui (yi (θi) , θi) > ui (yi (θ
′
i) , θi) ; (2)

moreover, for each type θ′j of agent j ∈ I, we also have for any x ∈ f (Θ)

ui(yj(θ
′
j), θi) < ui(x, θi). (3)

The existence of lotteries {y′i (θi)} ⊂ ∆ (A) which satisfy condition (2) is proved in

Abreu and Matsushima (1992). To satisfy condition (3), we simply add a penalty of η′ to

each outcome of the lotteries {y′i (θi)}. We call the resulting lotteries the dictator lotteries

for agent i and denote them by {yi (θi)}.

5



2.3.1 Maskin Monotonicity∗

In this section, we introduce a central condition to our rationalizable implementation result,

which is called Maskin monotonicity∗. The condition is proposed by Bergemann et al. (2011)

as a necessary condition for rationalizable implementation using ”well behaved” (such as

finite) mechanisms.

For (θi, x) ∈ Θi×X, recall that SLi (x, θi) denote the strict lower-contour set at lottery

x for type θi. For a given SCF f , we let Pf = {Θz}z∈f(Θ) be the partition on Θ induced by

f where Θz = {θ ∈ Θ| f(θ) = z}. For each partition P on Θ, we denote by P (θ) the atom

in P which contains state θ and Pi (θ) be the projection of P (θ) on Θi. Moreover, for each

x ∈ X, let

SLi (x,P (θ)) ≡
⋂

θ̂∈P(θ)

SLi(x, θ̂i).

The following definition is obtained by adapting Definition 5 of Bergemann et al. (2011) to

our setup that accommodates both lotteries and transfers.

Definition 2 Say an SCF f satisfies Maskin monotonicity∗ if there exists a partition

P of Θ such that (i) P is at least as fine as Pf ; (ii) for any θ̃, θ ∈ Θ, whenever θ̃ 6∈ P (θ),

there exists i ∈ I for whom

Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅. (4)

Although Maskin monotonicity∗ implies Maskin monotonicity, it was not a priori clear

whether the two conditions are indeed different. Jain (2017) has recently constructed an

example showing that strict Maskin monotonicity∗ is strictly stronger than Maskin mono-

tonicity. In Section 5, we modify Jain’s example to make the same point in our setup,

which accommodates the case with two agents and lotteries and transfers. Since Maskin

monotonicity∗ is a necessary condition for rationalizable implementation by a finite mech-

anism, we conclude that rationalizable implementation is generally more restrictive than

Nash implementation, even when we focus on finite mechanisms and allow for lotteries and

transfers.5

5This exhibits a contrast with Kunimoto and Serrano (2019), who argue that rationalizable implementa-

tion can be more permissive than Nash implementation when we consider social choice correspondences and

allow for arbitrary infinite mechanisms.

6



As we introduce strict Maskin monotonicity, we say that an SCF f satisfies strict

Maskin monotonicity∗ if we replace Li(f(θ̃),P(θ̃)) in (4) with SLi(f(θ̃),P(θ̃)). Again, in

the environment with transfers, strict Maskin monotonicity∗ and Maskin monotonicity∗ are

equivalent conditions.

Let P be the partition in the definition of strict Maksin monotonicity∗. As the case

of Nash implementation, we also make use of the best challenge scheme with respect to P .

Fix agent i of type θi. For each state θ̃ ∈ Θ, if SLi(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅ , we

select some x(θ̃, θi) ∈ SLi(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi). The best challenge scheme for agent

i of type θi with respect to P is defined as a function Bθi : Θ→ X such that for any θ̃ ∈ Θ,

Bθi(θ̃) =

 f(θ̃), if SLi(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) = ∅;

x(θ̃, θi), if SLi(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅

where we omit the reference to P in Bθi for simplicity.

The following lemma shows that there is a challenge scheme under which truth-telling

induces the best allocation.

Lemma 2 There is a challenge scheme {Bθi(θ̃)} for an SCF f such that for any state θ̃ and

type θi,

ui(Bθi(θ̃), θi) ≥ ui(Bθ′i
(θ̃), θi),∀θ′i ∈ Θi. (5)

Proof. Fix an arbitrary challenge scheme {Bθi(θ̃)} for the SCF f . Without loss of generality,

we may assume that for each state θ̃ and each pair of types θi and θ′i

Bθi(θ̃) 6= f(θ̃) and Bθ′i
(θ̃) 6= f(θ̃)⇒ ui(Bθi(θ̃), θi) ≥ ui(Bθ′i

(θ̃), θi). (6)

Indeed, if (6) does not hold for {Bθi(θ̃)}, then whenever Bθi(θ̃) 6= f(θ̃), we redefine Bθi(θ̃) as

the most preferred allocation of type θi in the set
{
Bθ′i

(θ̃) : θ′i ∈ Θi and Bθ′i
(θ̃) 6= f(θ̃)

}
. It

is straightforward to see that {Bθi(θ̃)} remains a challenge scheme with this modification.

Next, for each state θ̃ and type θi, we show that {Bθi(θ̃)} satisfies (5). We proceed

by considering the following two cases. First, suppose that Bθi(θ̃) 6= f(θ̃). Then, by (6), it

suffices to consider type θ′i with Bθ′i
(θ̃) = f(θ̃). Indeed, if Bθ′i

(θ̃) = f(θ̃) and Bθi(θ̃) 6= f(θ̃),

then it follows from Bθi(θ̃) ∈ SU i(f(θ̃), θi) that ui(Bθi(θ̃), θi) > ui(Bθ′i
(θ̃), θi). Hence, (5)

holds. Second, suppose that Bθi(θ̃) = f(θ̃). Then, it suffices to consider type θ′i with Bθ′i
(θ̃) 6=

f(θ̃). Since Bθi(θ̃) = f(θ̃), we have SLi(f(θ̃),P(θ̃))∩SU i(f(θ̃), θi) = ∅. Moreover, Bθ′i
(θ̃) 6=

7



f(θ̃) implies that Bθ′i
(θ̃) ∈ SLi(f(θ̃),P(θ̃)). Hence, we must have Bθ′i

(θ̃) /∈ SU i(f(θ̃), θi).

That is, (5) also holds.

In the following, we shall invoke a challenge scheme which satisfies (5) and we call it

the best challenge scheme.

We introduce the following definition.

Definition 3 Say that a partition P on states has product structure if, for every state

θ ∈ Θ, P (θ) is a product subset of Θ, i.e., P (θ) = ×i∈IPi (θ) with Pi (θ) ⊂ Θi.

For Theorem 1 which we will state and prove below, it entails no loss of generality

to assume that the partition P has product structure. Indeed, if the SCF f satisfies strict

Maskin monotonicity∗ on Θ, we can extend f and P to some new state space Θ′ so that

we can redefine the SCF f
′

: Θ′ → ∆(A) and the partition P ′ on Θ′ in such a way that

f ′ still satisfies strict Maskin monotonicity∗ on Θ′ and P ′ has product structure. Moreover,

Assumption 1 still holds on Θ′ so long as it holds on Θ.6

3 Rationalizable Implementation

We now state our main result on rationalizable implementation as follows.

Theorem 1 An SCF f is implementable in rationalizable strategies by a finite mechanism

if and only if it satisfies Maskin monotonicity∗.

Since a finite mechanism satisfies the best response property defined in Bergemann et al.

(2011) (see Definition 6 of Bergemann et al. (2011) for its precise definition), the “only if”

part of Theorem 1 follows from Proposition 3 of Bergemann et al. (2011). In the following

subsections, we will construct a mechanism to prove the “if” part of Theorem 1.

6For each P ∈ P, define Pi = P for each i ∈ I and ΘP ≡ ×i∈IPi. Let Θ′ ≡
⊔

P∈P ΘP as the disjoint

union of ΘP over P ∈ P. By construction, Θ
′

has product structure. Then, for each θ′ ∈ ΘP ⊂ Θ′, define

f
′
(θ′) as the common outcome of f in P (recall that P is finer than Pf ). It is easy to show that the translated

SCF f
′

: Θ
′ → ∆(A) satisfies strict maskin monotonicity∗ as long as the original SCF f : Θ → ∆(A) does.

Finally, we note that Assumption 1 holds on Θ
′

as long as it holds on Θ. Thus, we can translate any state

space Θ into a product state space Θ
′

so that everything carries over to the translated state space.

8



3.1 The Mechanism

3.1.1 Message Space:

A generic message of agent i is:

mi =
(
m1
i ,m

2
i

)
∈M1

i ×M2
i = Mi = Θi ×

[
×Ij=1Θj

]
.

That is, agent i is asked to make (1) an announcements of his own type (which we denote

by m1
i ); and (2) an announcement of a type profile (which we denote by m2

i ). To simplify

the notation, we write m2
i,j = θ̃j if agent i reports in m2

i that agent j is of type θ̃j.

3.1.2 Allocation Rule:

Say two states θ and θ′ are equivalent (denoted as θ ∼ θ′) if they belong to the same atom

of P . We further denote by Pi (Θi) as the projection of Pi (Θ) on agent i’s types. Thanks to

the product structure, Pi (Θ) is also a partition over agent i’s types. Thus, we say two types

θi and θ′i are equivalent (denoted as θi ∼i θ′i) if they belong to the same atom of Pi (Θi) .

Given a message profile m, we say that m is consistent if there exists θ̃ ∈ Θ such that

m1 identifies θ̃ and m2
i ∼ θ̃ for any i ∈ I. (7)

That is, consistency requires that the type profile m1 identifies a state θ̃ that is equivalent to

the state identified by m2
i for any i ∈ I. Note that m is consistent implies that Bm1

i
(m2

i ) =

f (m2
i ) for all i ∈ I.

For each message profile m ∈M , the allocation is defined as follows:

g (m) =
1

I

∑
i∈I

[
e (m) yi

(
m1
i

)
⊕ (1− e (m))Bm1

i

(
m2
i

)]
where yk : Θ → X is the dictator lottery for agent k defined in Lemma 1; moreover, we

define

e(m) =


0, if m is consistent;

ε, if m is inconsistent and for every i, m2
i identifies a state;

1 if m is inconsistent and for some i, m2
i does not identify a state.

That is, the designer first chooses each agent i with equal probability, to use agent i’s first

report to check i’s second report in determining the allocation.

9



In words, the outcome function distinguishes three cases: (1) if e(m) = 0, then we

implement f (m2
i ); (2) if e(m) = ε, we implement the compound lottery:

Cε
i,i(m) ≡ ε× yi

(
m1
i

)
⊕ (1− ε)×Bm1

i

(
m2
i

)
,

That is, with probability ε, we select an agent k and implement the lottery yk (·) according

to his first report; (3) if e(m) = 1, we implement the lottery yi (m
1
i ) .

By (1), we can choose ε > 0 sufficiently small, and η > 0 sufficient large such that (i)

we have

η > sup
i∈I,θi∈Θi,m,m′∈M

ui(g (m) , θi)− ui(g (m′) , θi); (8)

(ii) it does not disturb the “effectiveness” of agent i’s challenge, i.e.,

Bm1
i

(m2
i ) 6= f(m2

i )⇒ for any θ̃ ∈ P(m2
i ),

1
I

(1− ε)
(
ui(Bm1

i
(θ̃),m1

j)− ui(f(θ̃),m1
i )
)
− εη > 0

(9)

In other words, whenever agent i is called, it is strictly better for agent i to tell the truth in

m1
i if therefore agent i tells a lie in m2

i . Although agent i is picked with probability 1
I
, the

gain is large enough when we choose ε small enough to mitigate the effect from the dictator

lotteries.

3.1.3 Transfer Rule:

We now define the transfer rule. For any message profile m and any agent i, we specify the

transfer to agent i as follows:

τi(m) = τ 1
i (m) + τ 2

i (m) ,

where

τ 1
i (m) =

 0, if m2
i,j ∼j m1

j for all j 6= i;

−η, otherwise.
(10)

τ 2
i (m) =

 0, if m2
i,i ∼i m2

j,i for all j 6= i;

−η, otherwise.
(11)

In words, τ 1
i (m) cross-checks whether agent i’s second report about agent j’s type is equiv-

alent to agent j’s first report; and τ 3
i (m) cross-checks whether agent i’s second report about

his own type is equivalent to agent j’s second report about agent i’s type.

10



We start by outlining the proof of Theorem 1. In this proof, we first argue that if m is

rationalizable, then m1 identifies a state which is equivalent to the true state. Next, the cross-

checking transfers ensure that m2 also identifies a state equivalent to the true state. The lack

of correct belief in rationalizability, as described in the above example, also necessitates that

agent i must have an opportunity to self-challenge his own state announcement. Otherwise,

agent i may report a state that is outside the equivalence class of the true state while

believing that the lie will not be challenged by any other agent.

3.2 Proof of Theorem 1

Let θ ∈ Θ be a true state. We prove the “if” part of Theorem 1 in three steps.

Step 1: For any agent i ∈ I and any mi ∈ S∞i (M, θ), we have m1
i ∼i θi.

Fix i ∈ I and mi ∈ S∞i (M, θ). Then, there is a conjecture λi ∈ ∆
(
S∞−i (M, θ)

)
against

which mi is a best reply. Note that for any m, agent i’s 1st report m1
i has no effect on his

transfer, but only affects his payoff either through the dictator lottery when e (mi,m−i) = 1

or through the dictator lottery and Bm1
i

(m2
i ) when e (mi,m−i) = ε (in particular, agent i is

chosen to be checked). We now show m1
i ∼i θi by consider two cases:

Case 1. e (mi,m−i) 6= 0 for anym−i with λi (m−i) > 0. Consider the subcase that e (mi,m−i) =

ε. Suppose that m1
i �i θi. Let m̃i = (θi,m

2
i ). We show that m̃i is strictly better than mi

against λi in each of the following two subcases, which leads to a contradiction. Note that

e (m̃i,m−i) 6= 1. Firstly, we consider the subcase that e (m̃i,m−i) = ε. Thus, g (mi,m−i)

differs from g (m̃i,m−i) only when agent i is chosen to be checked, and the difference only

lies in the dictator lotteries and B(·) (m2
i ). By (2) of Lemma 1 and Lemma 2, m̃i is strictly

better than mi. Secondly, we consider the subcase that e (m̃i,m−i) = 0. That is, (m̃i,m−i)

triggers neither challenge nor inconsistency. For any pair of agents chosen, the outcome

involves no dictator lotteries. Hence,

g (m̃i,m−i) =
1

I

∑
i∈I

Bm1
i

(
m2
i

)
.

By (3) of Lemma 1, m̃i is strictly better than mi.

Consider the subcase that e (mi,m−i) = 1. Suppose that m1
i �i θi. Let m̃i = (θi,m

2
i ). We

show that m̃i is strictly better than mi against λi in each of the following two subcases,

which leads to a contradiction. Note that e (m̃i,m−i) can only be 1. Thus, g (mi,m−i) differs

11



from g (m̃i,m−i) only when agent i is chosen to be checked, and the difference only lies in

the dictator lotterie. By (2) of Lemma 1, m̃i is strictly better than mi.

Hence, we obtain m1
i ∼i θi in Case 1.

Case 2. e (mi,m−i) = 0 for some m−i with λi (m−i) > 0. That is, there exists θ̃ ∈ Θ such

that

(
m1
i ,m

1
−i
)

identifies θ̃;

m2
i ∼ θ̃ and Bm1

i
(θ̃) = f(θ̃),∀i ∈ I.

We claim that θ̃ ∈ P (θ) which implies m1
i ∼i θi. Suppose on the contrary that

θ̃ 6∈ P (θ). Then, since f satisfies strict Maskin monotonicity∗, there exists some agent j ∈ I
for whom Bθj(θ̃) 6= f(θ̃), and

uj(Bθj(θ̃), θj) > uj(f(θ̃), θj). (12)

Now we construct m̃j =
(
θj,m

2
j

)
. In the following, we shall show that m̃j =

(
θj,m

2
j

)
strictly

dominates mj, which contradicts the hypothesis that mj ∈ S∞j (M, θ).

Fix m̃−j ∈ S∞−j(M, θ). Observe first that e(m̃j, m̃−j) = ε because we have m̃2
j ∼ θ̃ and

Bθj(θ̃) 6= f(θ̃) . Thus,

g (m̃j, m̃−j) =
1

I

∑
k 6=j

[
εyk
(
m̃1
k

)
⊕ (1− ε)Bm̃1

k

(
m̃2
k

)]
⊕1

I

[
εyj(m̃

1
j)⊕ (1− ε)Bm̃1

j
(m2

j)
]

where Bm̃1
j
(m2

j) = Bθj(θ̃) 6= f(m2
j). In contrast,

g (mj, m̃−j) =
1

I

∑
k 6=j

[
e (mj, m̃−j) yk

(
m̃1
k

)
⊕ (1− e (mj, m̃−j))Bm̃1

k

(
m̃2
k

)]
⊕1

I

[
e (mj, m̃−j) yj

(
m1
j

)
⊕ (1− e (mj, m̃−j))Bm1

j

(
m2
j

)]
where Bm1

j

(
m2
j

)
= f(m2

j).

First, if e(mj, m̃−j) = ε, then

g (mj, m̃−j) =
1

I

∑
k 6=j

[
εyk
(
m̃1
k

)
⊕ (1− ε)Bm̃1

k

(
m̃2
k

)]
⊕1

I

[
εyj
(
m1
j

)
⊕ (1− ε)Bm1

j

(
m2
j

)]
.

12



Thus, g (m̃j, m̃−j) differs from g (mj, m̃−j) only when agent j is chosen to be checked. In

terms of dictator lotteries, by Lemma 1, m̃j is strictly better than mj; moreover, in terms

of allocations from best challenge schemes B(·)
(
m2
j

)
, m̃j is strictly better than mj by (12).

Hence, in this case, m̃j strictly dominates mj.

Second, if e(mj, m̃−j) = 1, then

g (mj, m̃−j) =
1

I

∑
k 6=j

yk
(
m̃1
k

)
⊕ 1

I
yj
(
m1
j

)
.

Thus, by Lemma 1, m̃j is strictly better than mj. Hence, in this case, m̃j strictly dominates

mj.

Third, if e(mj, m̃−j) = 0, that is, (mj, m̃−j) is consistent, Bm̃1
k

(m̃2
k) = f (m̃2

k) for any

k ∈ I, then

g (mj, m̃−j) =
1

I

∑
k 6=j

f
(
m̃2
k

)
⊕ 1

I
f
(
m̃2
k

)
=

1

I

∑
k 6=j

f
(
m̃2
k

)
⊕ 1

I
f(θ̃),

and

g (m̃j, m̃−j) =
1

I

∑
k 6=j

[
εyk
(
m̃1
k

)
⊕ (1− ε) f

(
m̃2
k

)]
⊕1

I

[
εyj(m̃

1
j)⊕ (1− ε)Bθj(θ̃)

]
= ε[

1

I

∑
k 6=j

yk
(
m̃1
k

)
⊕ 1

I
yj(m̃

1
j)]

⊕ (1− ε) [
1

I

∑
k 6=j

f
(
m̃2
k

)
⊕ 1

I
Bθj(θ̃)]

We compare the payoff difference from choosing m̃j rather than mj in the following way.

With probability ε, the loss from choosing m̃j rather than mj is bounded below by −η; with

probability (1− ε) , the gain from m̃j rather than mj is

1

I

(
uj(Bθj(θ̃), θj)− uj(f(θ̃), θj)

)
.

In total, the gain is at least

−εη + (1− ε) 1

I

(
uj(Bθj(θ̃), θj)− uj(f(θ̃), θj)

)
> 0,

13



which follows from (9). Thus, we conclude a contradiction to the hypothesis that mj ∈
S∞j (M, θ). This completes the proof of Step 1.

Step 2: For any agent i ∈ I and any mi ∈ S∞i (M, θ), we have m2
i ∼ θ̃ where θ̃ ∈ P (θ).

By Step 1, we know that for every i ∈ I, if mi ∈ S∞i (M, θ) , then there exists θ̂−i such

that (m1
i , θ̂−i) identifies some θ̃ ∈ P (θ). Since the partition P has product structure, m1

identifies some θ̃ ∈ P (θ). To establish Step 2, we first show that for any agent i, m2
i,j ∼j θj

for all j 6= i. Suppose not, that is, there exists j 6= i such that m2
i,j 6∼j θj. We construct

m̃i =
(
m1
i ,
(
θ−i,m

2
i,i

))
which is identical to mi except (m2

i,j)j 6=i. We claim that m̃i is strictly

better than mi against any m−i ∈ S∞−i (M, θ).

Fix m−i ∈ S∞−i(M, θ). Note that (mi,m−i) is “not” consistent since m2
i 6∼ θ, which is

implied by the hypothesis that m2
i,j 6∼j θj for some j 6= i.

We observe that (m̃i,m−i) and (mi,m−i) only differ in (m2
i,j)j 6=i and (m̃2

i,j)j 6=i within

their second report. In terms of transfers incurred, (m̃i,m−i) avoids the penalty η due to

τ 1
i (·), while (mi,m−i) is penalized by η. In addition, (mi,m−i) suffers the penalty from τ 1

i (·)
and (m̃i,m−i) avoid this penalty. Hence, the transfer gain is at least η, which is larger than

any possible utility loss from allocation. Hence, m̃i is a better reply than mi against m−i.

Finally, we claim that m2
i ∼ θ. By the previous argument, we know that in the second

report, each agent j 6= i announces agent i’s type as m2
j,i = θ̃i ∼ θi. To avoid the penalty

η due to τ 2
i (·) , agent i should announce mi such that m2

i,i ∼i θi. Since the partition P has

product structure, we conclude that m2
i ∼ θ. This completes the proof of Step 2.

Step 3: For any agent i ∈ I and any m ∈ S∞ (M, θ), we have g (m) = f(θ) and τi (m) = 0.

By Steps 1 and 2, for any m ∈ S∞ (M, θ) , we have that m1 identifies some θ̃ ∈ P (θ)

and θ̃ ∼ m2
i for every i ∈ I. We thus conclude that for every m ∈ S∞(M, θ), we have

e (m) = 0 for any i, j ∈ I so that no transfer is invoked and f(θ̃) is implemented. Again,

since θ̃ ∈ P (θ), it follows that g (m) = f(θ). This completes the proof of Step 3.

3.3 Continuous Implementation

Oury and Tercieux (2012) consider the following situation: the planner wants not only that

there is an equilibrium that implements the SCF but also that the same equilibrium contin-

ues to implement the SCF in all the models close to his initial model. Hence, the SCF is

continuously implementable. Oury and Tercieux (2012) obtain the following characterization

14



of continuous implementation in their Theorem 4: an SCF is continuously implementable

by a finite mechanism if it is exactly implementable in rationalizable strategies by a finite

mechanism.7 Since this result says nothing about the class of SCSs that are exactly im-

plementable in rationalizable strategies by finite mechanisms, we view this as an important

open question in the literature. We establish the following continuous implementation result

which is a direct consequence of our Theorem 1 and Theorem 4 of Oury and Tercieux (2012).

Proposition 1 If an SCF satisfies Maskin monotonicity∗, it is continuously implementable

by a finite mechanism.

To the best of our knowledge, our Proposition 1 is the first result which continuously

implements all Maskin monotonic∗ SCFs by a finite mechanism. The identified condition,

Maskin monotonicity∗, is strictly stronger than Maskin monotonicity, as we will show in

Section 5. However, two caveats remain in relating Proposition 1 to Theorem 4 of Oury and

Tercieux (2012). The first caveat is that we focus on complete information environments,

whereas Oury and Tercieux deal with incomplete information environments where the base-

line model can be an arbitrary finite type space. The second caveat is that we specialize in

environments with lottery and transfer, whereas Oury and Tercieux impose no condition on

the environments.

In incomplete information environments with lottery and transfer, Chen et al. (2019)

made some progress in this direction. They show that any incentive compatible SCF is

continuously implementable by a finite mechanism, provided that (i) we allow for arbitrarily

small ex post transfers both on the equilibrium and off the equilibrium; (ii) each player knows

his own payoff type; and (iii) agents’ beliefs satisfy a generic correlation condition. In other

words, under the three assumptions above, incentive compatibility is the only constraint for

continuous implementation.

4 Responsive SCFs

Bergemann et al. (2011) introduce a condition on SCFs.

7In fact, assuming that sending messages is slightly costly, Oury and Tercieux also prove the converse:

an SCF is continuously implementable by a finite mechanism only if it is rationalizably implementable by a

finite mechanism.

15



Definition 4 An SCF f is responsive if, for any pair of states θ, θ′ ∈ Θ, f(θ) = f(θ′)⇒
θ = θ′.

Responsiveness requires that the SCF “responds” to a change in the state with a

change in the social choice outcome. Observe that a responsive SCF that satisfies Maskin

monotonicity must satisfy Maskin monotonicity∗. Indeed, since Pf is the finest partition

on Θ, for any two states θ and θ
′
, θ

′ ∈ P(θ) is equivalent to θ
′ 6= θ. We thus obtain the

following corollary for the case of responsive SCFs.

Corollary 1 Let f be a responsive SCF. Then, the SCF f is implementable in rationalizable

strategies by a finite mechanism if and only if it satisfies Maskin monotonicity.

Remark: Bergemann et al. (2011) prove that under the no-worst alternative condition (See

Definition 4 of Bergemann et al. (2011), p. 1259), if there are at least three agents, f

is responsive, and satisfies Maskin monotonicity, then it is implementable in rationalizable

strategies by an infinite mechanism. Thus, we can handle the case of two agents unlike BMT.

In the case of responsive SCFs, strict Maskin monotonicity∗, which is a necessary

condition for rationalizable implementation, reduces to strict Maskin monotonicity. We

formalize this result whose proof is omitted.

Corollary 2 If an SCF f is responsive and satisfies strict Maskin monotonicity, it also

satisfies strict Maskin monotonicity∗.

In what follows, we argue that the responsiveness of SCFs is tightly connected to the

permissive result of virtual implementation by Abreu and Matsushima (1992), who show that

when there are at least three agents, any SCF is virtually implementable in rationalizable

strategies by a finite mechanism. An SCF f is said to be virtually implementable if, for

any ε ∈ (0, 1), the SCF f is exactly implementable with probability 1 − ε. Fix an SCF f

arbitrarily and let ε ∈ (0, 1), which will be fixed later. Define f ε : Θ→ ∆(A) as follows: for

any θ ∈ Θ,

f ε(θ) = εyi(θi) + (1− ε)f(θ),

where yi(θi) is the dictator lottery for type θi, as constructed in Lemma 1. Moreover, by

adding small transfers to the dictator lotteries, we can make yi(θi) 6= yi(θ
′
i) whenever θ 6= θ′,

16



without affecting the conclusion of Lemma 1 (i.e., (13) below). Therefore, f ε(θ) 6= f ε(θ
′
)

whenever θ 6= θ′. In other words, we can make f ε responsive. We now argue that f ε is also

Maskin monotonic.8 Fix two states θ and θ′ with θ 6= θ′ (and hence f ε(θ) 6= f ε(θ′)). Since

θ 6= θ′ and due to the construction of dictator lotteries, there must exist agent i for whom

ui(yi(θi), θi) > ui(yi(θ
′
i), θi) and ui(yi(θ

′
i), θ

′
i) > ui(yi(θi), θ

′
i). (13)

We construct the following lottery x(θ′, θi) ∈ X:

x(θ′, θi) ≡ εyi(θi) + (1− ε)f(θ′).

That is, x(θ′, θi) is constructed by replacing yi(θ
′
i) in f (θ′) with yi(θi). By (13), we have

x(θ′, θi) ∈ SLi (f ε (θ′) , θ′i) ∩ SU i (f ε (θ′) , θi) .

This shows that f ε satisfies strict Maskin monotonicity. By Theorem 1, we provide the

following result without proof.

Corollary 3 Any SCF f is virtually implementable in rationalizable strategies by a finite

mechanism.

Recall that our mechanism is different from that of Abreu and Matsushima (1992), who

do not use transfers but rather introduce a domain restriction in the lottery space. AM’s

(1992) domain restriction requires that for every player i and state θ, there exist a pair of

lotteries which are strictly ranked for player i and for which other players have the (weakly)

opposite ranking.

5 Maskin Monotonicity and Maskin Monotonicity∗

We construct an SCF which satisfies strict Maskin monotonicity but not strict Maskin

monotonicity∗.9 This implies that rationalizable implementation is more restrictive than

8One additional property Abreu and Matsushima (1992) obtain in their mechanism is that they can make

the size of transfers arbitrarily small. We discuss this below.
9This example is considered a two-agent version of the example in Appendix A of Jain (2017) which also

accommodate the environments with lottery and transfers.

17



Nash implementation. Recall that in environments with transfers, strict Maskin monotonic-

ity is equivalent to Maskin monotonicity and strict Maskin monotonicity∗ is also equiva-

lent to Maskin monotonicity∗. Let A = {a, b, c, d} , I = {1, 2} , X = ∆ (A) × R2, and

Θ = {α, β, γ, δ} . The agents’ utility functions are given in the two tables below. Consider

the following SCF f (α) = f (β) = f (γ) = a and f (δ) = b. For simplicity of notation, we

write ã ∈ A for (a, 0, 0) ∈ X which is a degenerate allocation with no transfer to any agent.

vA α β γ δ

a 3 2 2 2

b 2 3 1 3

c 1 1 3 1

d 0 0 0 0

vB α β γ δ

a 3 2 2 2

b 1 0 1 1

c 2 1 3 3

d 0 3 0 0

Claim 1 For every agent i and θ ∈ Θ, SLi (a, θ) ⊂ Li (a, α).

Proof. Observe that for any agent, any ã ∈ A\ {a}, and any θ ∈ Θ, the utility difference

between a and ã is larger at α than at θ, that is,

vi (a, α)− vi (ã, α) ≥ vi (a, θ)− vi (ã, θ) .

Hence, for any x ∈ X, we have ui(a, θ)− ui (x, θ) ≥ 0 whenever ui(a, θ̃)− ui(x, θ̃) ≥ 0.

Claim 2 The SCF f violates strict Maskin monotonicity∗.

Proof. Consider an arbitrary partition finer than Pf = {{α, β, γ} , {δ}} . Note that P (δ) =

{δ} for any partition P finer than Pf .
Case 1. α ∈ P (β) and α ∈ P (γ). In this case, P = Pf and hence P (α) = {α, β, γ}. Since

SLA (a, β) = SLA (a, δ) and SLB (a, γ) = SLB (a, δ). Thus, SLi (a,P (α)) ⊂ Li (a, δ) but

f (α) 6= f (δ). Hence, f violates strict Maskin monotonicity∗ for such P .

Case 2. α 6∈ P (β) or α 6∈ P (γ). We derive a contradiction for α 6∈ P (β) and the argument

for the case with α 6∈ P (γ) is similar and so omitted. If α 6∈ P (β), then by Claim 1, we

have SLi (a,P (β)) ⊂ Li (a, α). Then, f violates strict Maskin monotonicity∗ for P since

SLi (a,P (β)) ⊂ Li (a, α) and α 6∈ P (β).

Claim 3 The SCF f satisfies strict Maskin monotonicity.

18



Proof. Indeed, observe that b ∈ SLA (a, α) ∩ SUA (a, δ), c ∈ SLB (a, β) ∩ SUB (a, δ),

b ∈ SLA (a, γ) ∩ SUA (a, δ), a ∈ SLA (b, δ) ∩ SUA (b, α), d ∈ SLB (b, δ) ∩ SUB (b, β), and

a ∈ SLA (b, δ) ∩ SLA (b, γ) .

References

Abreu, D. and H. Matsushima (1992): “Virtual Implementation in Iteratively Undom-

inated Strategies: Complete Information,” Econometrica, 60, 993–1008.

Bergemann, D., S. Morris, and O. Tercieux (2011): “Rationalizable Implementa-

tion,” Journal of Economic Theory, 146, 1253–1274.

Brandenburger, A. and E. Dekel (1987): “Rationalizability and Correlated Equilib-

ria,” Econometrica, 55, 1391–1402.

Chen, Y.-C., T. Kunimoto, and Y. Sun (2019): “Continous Implementation with Small

Transfers,” mimeo.

Jain, R. (2017): “Rationalizable Implementation of Social Choice Correspondences,”

mimeo.

Kunimoto, T. and R. Serrano (2019): “Rationalizable implementation of correspon-

dences,” Mathematics of Operations Research.

Maskin, E. (1999): “Nash Equilibrium and Welfare Optimality,” Review of Econcomic

Studies, 66, 23–38.

Oury, M. and O. Tercieux (2012): “Continuous Implementation,” Econometrica, 80,

1605–1637.

19


	Introduction
	Preliminaries
	Environment
	Mechanism and Solution
	Dictator Lottery
	Maskin Monotonicity


	Rationalizable Implementation
	The Mechanism
	Message Space:
	Allocation Rule:
	Transfer Rule:

	Proof of Theorem 1
	Continuous Implementation

	Responsive SCFs
	Maskin Monotonicity and Maskin Monotonicity

